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Assuming that a macrovariable follows a Markovian process, the extensive 
property of its probability distribution is proved to propagate. This is a 
generalization of the Gaussian properties of the equilibrium distribution to 
nonequilibrium nonstationary processes. It is basically a WKB-like asymptotic 
evaluation in the inverse of the size of the macrosystem. Evolution of the 
variable along the most probable path and fluctuation properties around 
the path are considered from a general point of view with an emphasis on the 
relation of nonlinearity of evolution and the associated fluctuation. Anom- 
alous behavior of the fluctuation is discussed in connection with unstable, 
critical, or marginal states. A general treatment is given for the asymptotic 
properties of relaxation eigenmodes. 

KEY WORDS: Relaxation and fluctuation; Markovian process; propagation 
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I .  I N T R O D U C T I O N  

A macrovariable  is defined as an extensive quant i ty  describing macrostates 
of a large system composed of a great n u m b e r  of elementary units interact ing 

with each other and possibly with the environment .  Extensive thermo-  
dynamic  quanti t ies  such as the internal  energy, the total  magnet izat ion,  or  

the n u m b e r  of molecules of a chemical species are examples f rom statistical 
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physics. In nonphysical problems the population of a given sort of group in a 
society, for example, is considered as a macrovariable. It is a sum-function 
composed of a great number of microscopic quantities, the statistical average 
of  which is usually considered as a value realized in a given macrostate. Here 
we regard it as a stochastic variable to include its fluctuation. 

In a statistical equilibrium state the distribution of such a macrovariable 
will be generally nearly normal or Gaussian, the mean square deviations 
around the average being proportional to the size of the system. In ideal 
cases of noninteracting units this is proved by the central limit theorem of 
probability theory. In a system composed of interacting units, in spite of the 
fact that the central limit theorem has not been proved with such a great 
generality, the above-mentioned normal property is certainly a very general 
asymptotic law of a macrovariable, delicate exceptions being reserved for 
critical situations. Statistical thermodynamics assumes that the statistical 
distribution of a macrovariable, say X, is given by the law 

P~(X) = const • exp ~.(X) = const • exp s (1) 

where q)~(X) is the negative free energy divided by k T  and is a function of X 
and q~(x) is that for a unit volume as a function of the normalized macro- 
variable, 

x = X/s (2) 

being the volume of the system. The most probable value X~ of X (or x~ 
of x) is determined by maximizing ~ ,  (or q~). Retaining the quadratic term 
of the expansion of q~ around the most probable value, the distribution of 
fluctuations is described by the Gaussian law, 

( x  - x o )  ~ 
P~(X) = C exp 2/2~ 

-- C e x p [ - -  f2 (x- -x . )2]  - 

...I 

(3) 

It should be kept in mind that the distribution law (1) contains much more 
information than the Gaussian law, although the deviations from the 
Gaussian law are of limited interest for most practical purposes. A serious 
question arises, however, when the system is near a critical point, where the 
function ~, may lose the analyticity implicitly assumed in the Gaussian 
approximation. 

We now ask ourselves if an asymptotic property of a macrovariable 
similar to (1) could be assumed in nonequilibrium states of a large system. In 
other words, the question is whether or not it is possible to describe the 
temporal evolution of a macrovariable X or a set of such macrovariables by 
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a distribution function which is a generalization of the asymptotic form (1). 
At time t this would be of the form 

P ( X ,  t)  = C exp qS(X, t) = C exp[g2~b(x, t)] (4) 

I f  we call the probability distribution for finding X to be Xa at t = q ,  X2 at 
t = tz, etc., this would be of the form 

P ( X 1 ,  q ; X2 , t~ ;...) = C exp f2q~(xl, h ; x2, t2 ;...) (5) 

The most probable value of X at t is determined by maximizing the function 
q~ in (4). More generally, the most probable evolution of the macrovariable is 
along the path that maximizes the function q~ in (5). In the limit of a con- 
tinuous set of time points the function ~ is considered as a functional of x~, 
which plays a role similar to the action integral. The quadratic expansion 
around the most probable value or the most probable path will describe the 
fluctuation as a Gaussian process. Much more information is contained, 
however, in the function q~ in (4) or (5). 

The general problem we are concerned in this work is thus the asympto- 
tic law of evolution of a macrovariable or a set of macrovariables including 
fluctuations around a deterministic path. This problem has been studied by 
van Kampen, (1-~) who developed an expansion method which essentially 
corresponds to the methods used for proving the central limit theorem. The 
normalized macrovariable x ( t )  is assumed to be of the form 

x(t) = y(t)  + ~-1/2~ (6) 

where ~: is considered as a quantity of the order of s Assuming that the 
variable X follows a Markovian process, he showed that the master equation 
of the Markovian process can be transformed in an asymptotic limit of a very 
large size D into a generalized Fokker-Planck equation. The most probable 
path y ( t )  is determined by a determinstic law of evolution. Kubo (4) has shown 
that the same results can be directly derived from the Ansatz (4). In the 
present paper this latter approach will be expounded in greater detail. 

In this work we also base our study upon the Markovian assumption. 
This might seem unsatisfactory from the point of view of the physicist, who 
would like to start from the very basic dynamic laws at the microscopic level. 
Leaving such an ambitious attempt for a future project, we wish here to pave 
the road by attacking the problem in this rather modest approach. We might 
point out, however, that this approach has its own advantage, because, in a 
sense, it is more general than a microscopic approach. The microscopic 
dynamics is certainly a special limit of a Markovian process so that the most 
essential points may likely remain unaltered when the problem is formulated 
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in a more general way. A microscopic approach at the present stage would 
have to use highly complicated, yet not very rigorous techniques. On the other 
hand, our approach is simpler and transparent, even if it also may not be 
fully developed in the mathematician's sense. It  is not too sensitive to the 
nature of microscopic dynamics and so it can enjoy some generality. This 
makes it possible to apply the theory to physical as well as to nonphysical 
problems of similar nature. 

The asymptotic form of Eq. (4) reminds us of the WKB approximation. 
The parameter of smallness here is 

= ~ O  - I  

which is regarded as the counterpart of the Planck constant h in quantum 
mechanics. A Schr~Sdinger wave function 

~b ~-, exp[(i/h) S(x, t)l 

is compared with (4). Generally speaking, the expansion of S(x,  t) in terms of 
h is not convergent but is only semiconvergent or asymptotic. The same is true 
for the function ~(x, t) in Eq. (4). In fact, expression (1) is, as is well known, 
an asymptotic form obtained, for example, with the use of the Stirling formula 
or the method of the steepest descent. This asymptotic nature makes the 
problem hard to handle with mathematical rigor. Here we take a physicist's 
attitude and try to pursue the problem as far as it seems possible to attain 
some physically meaningful results. 

After defining our problem in Section 2 we shall first show that the use 
of the asymptotic form (4) is justified in the sense that it propagates. This 
proof  is based upon a simple assumption that elementary changes of the 
system occur spontaneously with probabilites determined by the internal 
states of the system. In the course of proof  evolution equations are obtained 
for the cumulants of the probability distribution. In Section 4 these equations 
are rederived on the basis of the Ansatz (4). The relation of this treatment to 
van Kampen's method will be commented on. Evolution of the most prob- 
able path and the variance of fluctuations around the path are determined by 
a set of ordinary differential equations. In the case of a single variable the 
variance at each instant is determined by the value of the macrovariable at 
the same instant, but if there are many variables the situation is more complex. 
The limiting law of determinsitic evolution is defined by the average velocity 
or the first moment of transition probability. The simplest ideal law of such 
evolution is a linear relaxation, which the classical Brownian motion 
rigorously follows. It is also realized in the linear regime of a macrovariable 
in the neighborhood of its equilibrium. If  a system is far from equilibrium, 
the evolution law is generally nonlinear. Fluctuations around such a non- 
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linear evolution can, however, be described normally as a nonstationary 
Markovian Gaussian process. From this point of view a path integral 
representation of the process is presented. A general formula for the cor- 
relation function of fluctuations in such a nonlinear nonstationary process is 
derived. When a system starts from an unstable equilibrium to approach a 
new stable equilibrium there will be an enormous enhancement of fluctuation 
or noise appearing in the course of the transition. At a critical or a 
catastrophic point a Gaussian approximation becomes no longer possible. 
Relaxation is essentially nonlinear and the phenomena of critical slowing 
down appear. Correspondingly, fluctuation becomes anomalous. This 
anomaly is connected with an accumulation of relaxation eigenfrequencies at 
zero. In the last section a general treatment is given for the eigenmodes of 
relaxation and eigenfrequencies in order to clarify some aspects of their 
asymptotic properties. 

2. T H E  M A S T E R  E Q U A T I O N  

Let X be a macrovariable of a system, the size of which is denoted by ~.  
It is assumed to be a stochastic variable following a Markovian process, 
which is described by the master equation (Chapman-Kolomogorov 
equation) of the form 

(e/at) P(X, t) 

f W(X--+ X', t) dX' P(X, t) -t- f W(X'--+ X, t) dX' P(X', t) (7) 

where P(X, t) is the probability density of finding X at the value X at the 
time t and W(X-+ X', t) is the transition probability per unit time from 
X to X'. For  simplicity the realized values of X are denoted by the same 
notation as the random variable itself and are assumed to be continuous. If  
they are discrete, the integrals are to be replaced by summations. If  there 
exists a set of random variables, X is thought of as a vector. We make here 
the following two basic assumptions for the transition probability. 

(a) A transition of the system is an event that makes X jump by an 
amount r which may take various values according to the transition 
probability 

W(X--+ X 4- r, t) ~ W(Jf, r, t) (8) 

(b) The probability that such a transition takes place in an infinitely 
short time interval is proportional to its size ~Q and is determined by the 
internal state of the system, so that the function (8) has the form 

W(X, r, t) = Dw(x, r, t) (9) 
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where 
x = J ; /~ 

is the normalized intensive macrovariable corresponding to X. 
With these assumptions the master equation (7) is written as 

e(e/ot) P(x,  t) = - f w(x, r, t) dr P(x,  t) 

+ w(x - -  Er, r, t) dr P(x  --  Er, t) (10) 

for the probability density function P(x, t), 

f ( x ,  t) = ~ P ( x ,  t) 

where the smallness parameter e is 

e = ~Q-z. (11) 

Equation (10) can be written in a formal way as 

e -~  P(x,  t) = - -  f dr --  exp t) P(x,  t) (12) 

o r  

where 
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~t P ( x , t ) =  ~ ~ E  n-1. (--~x)" c~(x,t) P(x,t) (13) 

is the nth moment of the transition probability w. We assume the convergence 
of all moments (14) and the Kramers-Moyal  expansion (13). This is certainly 
a strong assumption, but the task to weaken this is left to the mathematician. 

A few examples may serve for illustration. A kinetic Weiss-Ising 
model ~,5) is defined by the following master equation for the probability 
P(N+,  N _ ,  t) of finding N+ plus and N_ minus spins (N+ + N_ = N) at 
time t: 

(~/~t) P(N+ , N_ , t) 
= --  [ W + _ ( N + , N _ - + N + - -  1, N _ +  1) 

-[- W_+(N+, N_ --~ N+ + 1, N_ - -  1)] P(N+,  N _ ,  t) 

@ W_+(N+ - -  1, N_ + 1 --+ N+,  N_) P(N+ - -  1, N_ q- 1, t) 

~- W+_(N+ ~- 1, N_ --  1 -~ N+ , N_) P(N+ -k 1, N_ --  1, t) (15) 

e.(x,  t) = f r~w(x, r, t) dr (14) 
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where 

W+_(N+ , N_  --+ N+ - -  1, N_  + 1) = N+ exp[--/x -- (oL/N)(N+ - -  N_)](16) 

W_+(N+ , N_  ---> N+ + 1, N_ - -  1) = N_ exp[/z + (c~/N)(N+ - -  N_)] 

are the transition probabilities for the spin flip. A flip of a spin among N+ 
plus spins (or N_ minus spins) in a unit time is proportional to N+ (or N_) and 
is assumed to be determined by the exponential Boltzmann factor in which 

l* = I~oH/k T, c~ = J / k  T 

represent the external magnetic field and the molecular field scaled by kT .  

Generally the transitioff probabilities can be more complex, but choosing the 
rate factor independent of spin configurations (16) is the simplest possible 
assumption which bears the characteristic features of Ising spins in the Weiss 
limit in contact with a thermal bath. The transition probabilities assure the 
equilibrium distribution 

N~ 
P~(N+ , N_) = N+! N_] 

If  we write 
x = (N+ - -  N _ ) / N  

Eq. (15) takes the form 

o r  

exp [/x(N+ -- N_) q- ~ (N+ -- N_) ~] (17) 

�89 P(x ,  t) = -- �89 + x) + e"+~(1 -- x)} P(x ,  t) 

+ �89 - -  x + e) P ( x  - -  e, t )  

+ �89 + x q- e) P ( x  + e, t) (is) 

ffO/Ot) P(x ,  t) = -- [(1 -- e~(~/~ e-"-~(1 + x) 

+ (1 - -  e-~<a/~ e~+~(1  - -  x)]  P ( x ,  t)  (19) 

with e = 2IN. The moments of transition probabilities are 

c. = 2[--x cosh(/z + ax) q- sinh(/z + ax)] 

c. = 2[cosh(/~ + cox) -- x sinh(~ q- =x)] 

for odd n 
(2O) 

for even n 

If  the molecular field coefficient ~ is put equal to zero, the model represents 
noninteracting spins. It should be noted that this is equivalent to the Ehrenfest 
model modified to a continuous-time case. 
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More generally, the following type of birth and death processes belong 
to the category of our problem. If  A(X,  r, t) is the rate of death of r indivi- 
duals and B(X, r, t) is that of birth of r individuals out of a polulation of X, 
the master equation for the process will be 

(~/ot) P(X,  t) = - Y~ A ( x ,  r, t) P(X,  t) 

-k ~ A ( X  + r, r, t) P ( X  + r, t) - -  ~ B(X,  r, t) P(X,  t) 

-Jr- ~. B ( X  --  r, r, t) P ( X  --  r, t) (21) 
r 

where P(X, t) is the probability of finding the population to be X at time t. If, 
further, the rates of birth and death are proportional to the size of the system, 
as may be assumed in most cases, we put 

A(Z,  r, t) = [2a(x, r, t), B(X, r, t) = Y2b(x, r, t) (22) 

where x = X/s is the population density. Equation (10) takes the form 

e(O/Ot) P(x,  t) = --  ~ [a(x, r, t) -~- b(x, r, t)] P(x,  t) 
T 

-k ~ a(x -k er, r, t) P(x  + er, t) (23) 
T 

-k ~ b(x --  er, r, t) P(x  --  er, t) 

of which the above-mentioned Weiss-Ising model is only a special case. The 
transition moments are defined by 

c,~(x, t) = ~ r*'[(--)'~a(x, r, t) 4:- b(x, r, t)] (24) 

The transition probabilities W in Eq. (7) can generally be dependent on 
time. If, however, the process is stationary and if a unique statistical equili- 
brium exists, then the transition probabilities are conditioned by this require- 
ment, which, in general, however, is only weak. If  the strong condition of 
detailed balance can be assumed, this gives 

P~(X) W(X--~ X')  = P~(X') W(X'--~ X )  (25) 

where P~(X) is the equilibrium probability. This allows us to write the transi- 
tion probabilities in the form 

W ( X - +  X')  = W ( X  [ X')[P~(X')/P~(X)] 1/2 (26) 
o r  

W ( X  ~ X') = W(X[ X') exp{�89 -- ~(X)]} (27) 
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Here W is symmetric, 

w ( x  l x ' )  = w ( x '  l x )  (28) 

and the function ~e(X) is defined by (1). If  the variable Xis  a thermodynamic 
one, q~e(X) gives 

(1/s ~5e(X ) = ~e(x) = --fife(x) (29) 

in the thermodynamic limit of a large system. The normalized transition 
probability w in Eq. (10) is then expressed as 

w(x, r) ~- ~(x, r) exp[�89 + O(~)] (30) 

for a jump by r from the state x. The condition (28) means that 

~(x, r) = ~(x § Er, - - r )  (31) 

o r  

~(x, r) = ~(x, - r )  + O(~) (32) 

Therefore the moments of transitions are written as 

e,~(x) = 2 ( dr r"~(x, r) sinh[�89 8q~/ex] 4- 0(~) (33) 
~ r  >0 

for odd n and 

c,(x) ~- 2 ~ dr r'~(x, r) cosh[�89 8r 4- O(,) (34) 
r  >0 

for even n. Implications of these equations will be discussed later. 

3. P R O P A G A T I O N  OF T H E  EXTENSIVE  PROPERTY OF A 
M A C R O V A R I A B L E  

In a previous work by one of the present authors it was assumed as an 
Ansatz that the transition probability distribution of a macrovariable as 
determined by Eq. (10) has the asymptotic form 

P(x, t) ~- C exp{(1/E) [~(x, t) + O(E)]} (35) 

This Ansatz can be justified, as will be seen in the following, in the sense 
that this type of solution of Eq. (10) propagates in time, although it is not 
unique. If  a solution of the equation has this form at an arbitrary initial 
time, it will keep this form at later times. This assertion may be called the 
propagation of the extensive property of the distribution of a macrovariable. 
This conservation may possibly be violated when the system changes through 
a critical point, but with this reservation the theorem can be proved as follows. 
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Let us introduce the characteristic function Q(~, t) defined by 

Q(~, t) = ( e ( x ,  t) e ~e~ dx (e  q~) (36) 
d 

Then Eq. (12) gives 

ff -~  Q(~, t) = - dx  dr e/e~(1 - -  e i~er) w(x,  r, t) P (x ,  t) 

= I f  

Here we used the formula 

1 - -  e i~" = --  ds ie~e ies 

Defining 

w[~, r, t] = f eieXw(x, r, t) dx  

(37) 

(38) 

we have 

f dx  e ~ w ( x ,  r, t) P(x ,  t) = (1/27r) f d~? Q(~ - ~/, t) w[~, r, t] (39) 

so that Eq. (37) is written as 

1 fo" 8--t Q(~' t) = ~ f dr f d~ 1 ds i~e~'e~Q(~ - ~7, t) w[~), r, t] (40) 

The solution of this equation is assumed to have the form 

Q(~:, t) = exp q(~:, t) = exp ~ [(i~)~/n!l q~(t) (41) 
~z=l 

which gives 

--r / ,  t ) =  exp q ( ~ -  ~/, t ) =  exp [ ~  (~ /n! )qC~ ' ( - -~  1, t)] Q(~ (42) 
k .1 

with 

qC-~(--r/, t) = [(~/a~) ~ q(~, t)]e=_, (43) 

if the analyticity of the cumulant function q can be assumed. Inserting 
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expression (42) into Eq. (40) and dividing both sides of the equation by Q, we 
get 

qn(t) = f d~7 dr ds w[r/, r, t] exp q(--•, t) 

~=z T hn(~, t) (44) 

where we introduced the notation 

h~(r/, t) ~ i-n[q(,~)(_~, t) - -  q(")(0, t)] (45) 

By Eqs. (41) and (43) this is expressed as 

hn(r/, t) = ~. (1/m!)(--ir/) ~ q,,+~(t) (46) 
m = Z  

Now the last exponential function in the integrand of Eq. (44) is expanded 
into a power series of ~: as 

exp ies~ + ~___~ n! hn(--r/, t) = n=o ~ mn(e, s, r/, t) (47) 

Thus Eq. (44) is reduced to the set of equations 

nl On(t) = ~1 f dr/ f dr eqC-',t'w[r/, r, t] fords mn-z(e, s, r/, 1) (48) 

f o r n  /> 1. 
The functions m are the moments which correspond to the cumulants 

appearing in the exponent on the lhs of  Eq. (47). So the nth moment m~ 
contains cumulants up to the nth. Thus the rhs of Eq. (48) contains hks from 
k = 1 to k = n -- 1, for example; 

m0 = 1, m I = es -}- hz, m2 ----- m, = q- h2, ma = --2mz a q- 3mzm2 q- ha, etc. 
(49) 

This shows that the Ansatz for the solution of Eq. (48), 

qn(t) = en-Zq,o(t) + enqnz(t) + E"+lqn2(t) + "'" (50) 

is consistent. With this Ansatz, Eq. (46) gives 

hn = e~hno + en+lhnl -~- "" (51) 
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where 
h~o = --i~q~+l,o 

1 2 
h n l  = --i~q~+a,z - -  ~ q,~+~,o 

(52) 
!c 

hn,~ = Y, [1/( . /+ 0 ! ] ( - i ~ )  ~+1 q~+l+~.~_j 
j=O  

and so the moments rn~ have the expansions 

mn =: enm=o + r + "'" (53) 

as is seen from Eq. (49). Thus both sides of Eq. (48) start from O(~n-O, 
showing the consistency of the Ansatz (50). 

This Ansatz gives to the characteristic function Q(~, t) the following 
form: 

O(~:, t) = exp[(1/e) r E, t)] (54) 

with 

where 

r E, t) = ~bo(U , t) + e~ba(u , t) + ~2~b2(u , t) + "'" (55) 

~o 
~b~(u, t) = ~ (un/n !) qn~(t) (56) 

n = l  

This almost completes our proof. If  the characteristic function O(~, t) has 
the form (54) at an initial time to, the expansion coefficients q,~k(t) are deter- 
mined for later times by Eq. (48) so that the same form (54) persists for 
t > to �9 In order to obtain the asymptotic form (35), we perform the inverse 
transform of (36), 

P(x ,  t) = ~ _ Q(~, t) exp(-i~:x) d~ 
co (57) 

1;2 
This can be evaluated by the method of steepest descent. Writing 

ie~: = u 

the col of the function in the exponent in the integrand is determined by 

~k(O/eu) Ck(u, t) = x (58) 
k = 0  
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which gives the solution u(x, t) in the form 

u(x, t) = ~ 4kuk(x, t) (59) 
k = 0  

Then Eq. (57) becomes 

- -  ~u 2 exp [1 ~(x, 4, t ) +  (60) 

where 

r 4, t ) =  [~  4k~,bk(u, t ) -  ux]~=~(~,O (61) 

which is written as 

r t) = ~ 4~r t) (62) 

namely as an asymptotic expansion for small 4 or large D. 
Thus the asymptotic form of P(x ,  t), (35), or more precisely (60), which 

we call the extensive property of P(x ,  t), indeed propagates in time; if it is 
valid at an initial time, it will remain so at later times. It should be noted, 
however, that this assertion may break down if the convergence properties 
implicitly assumed in the above arguments are lost at a certain time. This 
may be relevant in critical regions. 

I f  the distribution of x is the delta function 

P ( x ,  to) = ~ ( x  - Xo) 

at the initial time to, the initial characteristic function is simply 

so that 

Q(~:, t) ----- e ie~~ 

r to) ---- uxo (63) 

is the initial condition for r E, t) of Eq. (55). Since this bears the extensive 
property, the transition probability P(x ,  t [ xo ,  to) from x0 to x in a time 
interval (to < t) is extensive and is expressed as 

P(x ,  t [ Xo , to) = ~ exp ~b(ie~, t l Xo , to) --  i~x d~ (64) 
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where ~b(u, t l x0, to) is the function (55) determined by the initial condition 
(63). Asymptotic evaluation of this integral gives the expression 

P(x, t l Xo, to) = [2TrA(x, t l Xo, to)] -1/e exp ~ ~(x, t l xo, to) (65) 

for the transition probability, where A is a quantity of O(E). The function 
~(x, t l xo, to) characterizes the extensive property of transition in a large 
system. For a path of transitions (x i ,  q ; x 2 ,  t2 ;...; xn,  tn) we have the 
probability 

P(x~ , q ; x~ , t2 ;... ; x,~ , t~) 

= [-I [27rd(xj , t~[xJ- l , t~- l )]  -1/z exp [1 ~ c~(x, , t~]x~_l,  tj-x)] (66) 
j~2 ~=2 

The leading terms in ~b(~, E, t) in (56) are easily determined by Eq. (48). 
To the order of E ~ this gives 

~lo(t) = (1/2~r) f &7 f dr r WbT, r, t I e-iq~o ' (67) 

Inserting (38) into the integrand, we have 

~)lo(t) = cl(qzo, t) (68) 

where Cl is the first moment of transition, or the average velocity, defined by 
Eq. (14). To the order of E we have from Eqs. (48), (49), and (52) 

�89 ---- �89 + (Sca(q~o)/Oq~o) qzo (69) 

In like manner we have 

1 1 &~(qlo) 
qa~ -~ ~ c3(ql~ @ 8ql ~ 

82c1(qlo) 8c~(qaz) 
- - q 2 o  + ~ q~o + 

8qlo 8qzo 
- -  q3o ( 7 0 )  

to determine qao(t) and similar but more complicated equations f o r  higher 
q,o(t). The temperal evolution of q,,o(t) is governed by that of lower order 
q,0 and the moments of transition up to the nth. The function ~b 0 in Eq. (55) 
is constructed in this way, 

The higher-order functions ~b~, etc., in Eq. (55) are also obtained in a 
successive way. For example, qn(t) follows the equation 

qn(t) = cl"(qzo) q11 -J- �89 q~o (71) 

The evolution of q2z(t) is determined by that of qzo, q2o, qn ,  and q~o. Thus 
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Eq. (48) suffices to determine the evolution of the cumulant function ~b(~, E, t) 
in (54). 

By definition, q~0, q n ,  and q20 correspond to the average and the 
variance of x, to the order of e. We write for convenience 

( x , )  = y( t )  § cu(t) + O(e2), y ( t )  =-- qzo(t), 

and 

u(t)  = qa~(t) (72) 

<[x~ - ( x , > p >  = ~o(t)  + o ( , 2 ) ,  ~( t )  =- q 2 o ( t )  (73) 

The Gaussian approximation for P(x ,  t) is thus simply given by 

P(x ,  t) = (2~ee)-l/2 exp [ 1 Eu(t)] 2] (74) �9 2 ~ ( t )  [ x  - y ( t )  - 

For the multigate transition probability (66) the Gaussian approximation 
is given by 

P ( x l  , tl ; x2 , t2 ;... ; x,, , t , )  

= H [2~rea(tj I x~_l, t~._i)] -1/2 
.4=2 

• exp -- ~ [x, -- y(tj {.x,2Jeit,]_ 0 -- eu(t, L x j_~,  t,_,)]2 (75) 
I x j - , ,  tj_~) 

where y( t  [ x ' ,  t'), c~(t Ix ' ,  t'), and u(t l x ' ,  t ') are solutions of Eqs. (68), 
(69), and (71) with the initial conditions 

y( t ' )  = x' ,  e( t ' )  = O, u(t ')  = 0. (76) 

With or without the correction eu in the exponent, the transition probability 
(75) satisfieS ~he Markovian property 

f P ( x l ,  q ; x ' ,  t ' )  dx '  P(x ' ,  t '  ; x2 ,  t2) = P ( x z ,  tl ; x2 ,  t2) 

This is confirmed with the use of Eqs. (69) and (71) or of Eq. (95). The transi- 
tion probability (75) describes the processes x( t )  in a Gaussian approxima- 
tion. This will be discussed in later sections. 

4. E V O L U T I O N  E Q U A T I O N S  

We have seen that the cumulant function r in Eq. (54) is determined by 
a set of evolution equations like (68)-(70). These equations can be more 

8 zz/9/z-5 
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directly obtained from the Ansatz (35). This has been shown already by 
Kubo ~4) but here we discuss this matter in a little more detail. 

Let us assume that the probability P(x, t) has the extensive property so 
that it is written as 

P(x, t) = C exp[(1/E) ~0(x, t) q- ~z(x, t) -q- O(e)] (77) 

The normalization factor in Eq. (60) contains functions of x and t in succes- 
sive powers of r but they can be conveniently absorbed into the exponent of 
the expression (77), so that the factor C is a constant of order ~-1/2. Inserting 
(77) into Eq. (12), we get 

L at r176 t ) =  -- f drw(x ,  r ) [ 1 -  exp ( - - r  ~x~ (78) 

and 

a [w(x ,r ) ( l r~aZ(% r ~ _ ~ ) _  ~w --~ ~z(x, t ) -~  f dr ax 2 -- r --b-~] exp ( - - r  ~ x  ~ 

(79) 
to determine 4~o and ~x- 

The Gaussian approximation (73) suggests a method to solve Eq. (78). 
We put 

x = y(t) -]- z (80) 

and 

~o(x, t) = go(z, t) (81) 

in Eq. (78), which is then written as 

8_ a z at g o ( z , t ) -  ~(t)-gy go( , t )  = - f w(y + z , r )ar  [1- exp ( - - r  ag~ ,J ]] 

(82) 
and choose y(t) so as to satisfy the equation 

~9(t) = el(y) (83) 

This makes the terms linear in Ogo/OZ vanish from the equation. Inserting (80) 
and (83) into (82) and expanding in powers of z by assuming the solution 

go(z, t) = a2(t) z 2 q- a3(t) z ~ -}- "'" (84) 

we obtain a set of ordinary differential equations, which we call the evolution 
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equations, for the expansion coefficients. The first few members of these 
equations are 

d2(t ) = 2e~(y) a~ ~ 2c~'(y) as (85) 

d~(t) ---- 6c2(y) a2aa - -  kea(Y) a~ ~ -- 3ez(y) as + 2c2'(y) a22 -- cz ' (y )  a~ (86) 

If  we put 

Eq. (85) becomes 

a2 ----= --[2or(t)] -1 (87) 

6( t )  = 2c1'(y) a(t) + c2(y)  (88) 

reproducing (69). Equations for higher-order coefficients in expression (84) 
and those in the similar expansion of r can be derived in the same way. Thus 
the function go in Eq. (81) gives the Gaussian approximation (73) in the 
second order of z, but the above method yields a more complete expression 
for r t) including higher orders of z. 

This calculation can easily be generalized to a vector variable 
x = (xz, x2 .... , x,) representing a set of macrovariables. Clearly Eq. (83) 
now reads 

yj(t) = Cl~(y ) (89) 

where 

cxj(y ) = ( dr r r  . . . . .  Yn , rl  . . . .  , r , )  (90) 
d 

are the average velocity. Equation (88) takes the somewhat complicated form 

~,~(t) = ~ (~j~ ~c 'k  + ~ c ~  cr~k ) + c2j~ (91) 

where 

c2jk(y ) = f dr r j r k w ( y l  , . . . ,  y~  , r l  . . . . .  rn) (92) 

are the second moments of transition. The distribution function P ( x ,  t) is 
written as 

1 
= I -  z - + "I 

in the Gaussian approximation, where cr -1 is the inverse matrix of the variance 
matrix or. 

The variance matrix ~ evolves in time following Eq. (91). It is governed 
by the first and second moments of transition which vary in time according 
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to the evolution of the average (or the most probable) motion y(t) of x as 
determined by Eq. (89). In the special case of a single variable the variance 
e(t) is determined by the value of y at that instant provided that the transition 
probability w does not explicitly depend on time. Then Eq. (88) is written as 

dcr dcl 
cz(y) - ' ~  -~ 2 --d-f- ~ q- c~(y) (94) 

with the use of Eq. (83). This equation is easily integrated to give 

[ el(y) ] 2 f ]  c2(y')dy' 
0 

(95) 

with the initial conditions 

Y=-Y0, e =  % at t---- t o 

Later we shall discuss some implications of this equation. 
Here it may be worthwhile to comment on van Kampen's method in 

connection with the method developed in this section. Van Kampen (1) pointed 
out quite rightly that the Kramers-Moyal equation (13) is not by itself a 
systematic way of expanding in the smallness parameter E. For example, if it 
is terminated at the second term of the rhs of (13), 

Ot P(x, t) = Oxe c~(x, t) P(x, t) -t- ~ ~ c2(x, t) P(x, t) (96) 

it looks like a Fokker-Planck equation, which, however, requires great 
caution to handle. In the case when the coefficients ex and e 2 do not explicitly 
depend on time Eq. (96) does not reproduce a correct equilibrium solution. 
It gives only the Gaussian approximation as given by Eq. (3) if the stationary 
solution is expanded around the maximum. This is all right, but an honest 
solution of Eq. (96) is generally meaningless except under the simple situation 
where c~ is linear in x and e2 is constant. In other words, as van Kampen has 
emphasized, a Fokker-Planck equation containing a nonlinear function 
el(x) is at least a very tricky object. 

This means that the use of a Fokker-Planck equation of the type (96) 
should be looked out for when a nonlinear relaxation process is under 
consideration. At the same time it should be remembered that the generally 
accepted equation 

~-~ P(x, t) = ~ D(x)[--~--ff- ~- k T  ~-x] P(x, t) (97) 
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is hardly justified as a genral equation. This equation is of course correct if 
the equilibrium free energy F~(x) is quadratic in x. There is no general 
validity, however, unless it is actually derived from a more basic microscopic 
calculation. A simple counterexample will suffice to illustrate this. In Eq. (15) 
if the molecular field constant c~ is zero, the model is for noninteracting Ising 
spins, for which cz is linear in x as is seen by Eq. (20). Relaxation of the spins 
follows a simple exponential decay. On the other hand, the "thermodynamic 
force" derived from the free energy is nonlinear and so Eq. (97) will not 
reproduce simple relaxation of spins unless a very artificial assumption is 
made for the diffusion coefficient D in (97). 

As a systematic method of expansion van Kampen used the following 
method. In the Kramers-Moyal equation he put 

x = y(t)  4- el/2~ (98) 

choosing y(t) so as to satisfy Eq. (83). Then Eq. (13) is transformed into the 
equation 

8 
~ P(~, t) = - ~-~/~ ~ [ q ( y  + o / ~ )  - c~(y)] P(~:, t) 

+ (--)~ n! ~ c . (y  -}- d/2~) P(~:, t) (99) 
n=2  

for the function 

P(~, t) = P(x, t) 

In the limit of E ~ 0, Eq. (99) reduces to 

P(~, t) = - cl'(y) ~P + ~ ~ c2(y) P (100) 

which is a Fokker-Planck equation with time-dependent coefficients el(y ) 
and c2(y). It is easily confirmed that the Gaussian distribution (73) with y(t) 
and g(t) determined by Eqs. (83) and (88) is in fact the solution of Eq. (100) 
for given initial conditions. It is thus seen that the Fokker-Planck equation 
(96) should not be solved too honestly but only with the Ansatz (98) in order 
to give a meaningful result. 

If  one proceeds from the Gaussian approximation to higher approxima- 
tions, one obtains a function which is a solution in the form of (62). In order 
to determine the function 

(1/~) Co(X! t) = ~(~, t) 
(101) 

=- a2(t) ~ + r ~ + ea4(t) ~4 + ... 

82219Iz-5" 
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for example, all orders of the expansion (99) have to be considered. This 
procedure is tedious and unpractical. One can reach instead the same result 
more directly by using go(z, t), (81), which is obtained from Eq. (82). As we 
have seen already, the Ansatz (77) and the transformed equations (78) and 
(79) and the like provide us with a convenient means to attain an asymptotic 
solution with the entensive property. 

It is also possible to express P(x, t) in Eq. (12) by a path integral and to 
formulate the problem through variational principle and the associated 
Hamilton-Jacobi equations. This approach is briefly sketched in the appen- 
dices. 

5. NORMAL F L U C T U A T I O N ,  RELAXATION,  A N D  
RESPONSE NEAR EQUILIBRIUM 

We consider some consequences of the evolution equations 

~( t )  = c~(y) 

d(t)  = 2c1 ' (y)  ~ q- c2(y) 

it(t) = c l"(y)  u q- �89 cr 

(102) 

(103) 

(104) 

which were derived in the preceding sections [Eqs. (68), (69), (71), (83), 
(88)]. The first equation determines the most probable path of x(t), to 
O(e~ which may be called the deterministic motion of x. The second equation 
gives the variance cr of x(t) at time t(for brevity ~r is called hereafter the 
variance although by usual definition the variance is e~). The third equation 
gives, to O(e), the deviation of the average from the deterministic path which 
comes from the nonlinearity of cl(y). In the case of a single variable, cr and u 
can be given as functions o f y  [cf. Eq. (95)]. 

The simplest example is classical Brownian motion, for which we put 

ca(y ) = --yy, c~(y) = const = c (105) 

Equation (102) then gives a simple relaxation, 

9 = --yy, y(t) = yo e-~ 

and Eq. (103) the variance 

c 
~r(y)=-~y -}-(%-- c ] ( y  ]"2y]\yo! 

= cre @ ((to - -  ere) e -2~,~ 
(106) 



Fluctuation and Relaxation of Macrovariables 71 

where 
~ = e/2~ (107) 

is the variance in equilibrium y = 0. This is directly obtained from Eq. (103) 
as the stationary solution of ~r. The equilibrium distribution of x is 

P~(x) = (27reo'e) -1/2 exp(--x2/Zecre) (108) 

and the nonequilibrium distribution is 

e(x ,  t) = [2r -1/2 exp [ 
1 l (x -- yoe-'~)21 (109) 2e~(t) 

if the initial distribution is 

P 0  c, 0) = (27reao) -1/2 exp [--  1 (x -- yo) ~] (110) 

This process is described by the standard Fokker-Planck equation, 

e--[ ~ r x  -k i ec P(x, t) (111) 

The general solution of this equation is a superposition of the solutions of  
(109) obtained by multiplying it by an arbitrary function o f y  0 and integrating 
over Yo (taking % to be zero). The autocorrelation of x(t) is easily found to 
be 

(X(tl) x(tz)) = (X(tx)Z) exp[--~(t2 -- q)], q < t~ (112) 

This is in accordance with Doob's  theorem: In a Gaussian Markovian 
process the autocorrelation decays by a simple exponential law. It should 
be remembered that this is essentially connected with the law of linear 
relaxation. This statement obviously applies more generally to a set of  
macrovariables. Namely, if Eq. (104) hold for a vector variable y with con- 
stant relaxation matrix ~, and a constant matrix c2, the process is a multi- 
dimensional Gaussian Markovian process described by a Fokker-Planck 
equation. Relaxation of the macrovariables is linear and the correlation 
matrix decays in exponentially time. 

An equilibrium point x~ is defined by the condition 

c1(x3 = 0 (113) 

Note that the term equilibrium is used here in a wide sense. It is not necessarily 
a thermodynamic or a static equilibrium, but it can be a steady state with a 
constant flow, for example, in the case when the variable x is a current. 
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Around an equilibrium point x 

A.9 = --~,~ Ay + O(Ay) 
if 

~CI(X) X=Xe 
Ye ----- ~x 

(114) 

(115) 

is not zero. If  7~ is zero, we call it a marginal equilibrium, which will be 
treated in a later section. If  7, < 0, the equilibrium is unstable; the system 
will depart from x~ when an infinitesimal deviation determines the direction 
of departure. 

In a stable equilibrium, y~ > 0, the probability distribution of deviation 

/[X ~- X - - X  e 

from the stable point x~ is given by a Gaussian distribution, 

p ( A x )  = (2"n'EO'e) -1/2 exp t--  1 [ (Ax) ~ ; + I (116) 

with the variance a, given by a stationary solution of Eq. (103), namely 

= -lc2(x3/c '(x.) = (117) 

If  the transition probabilities are defined by Eq. (30), we have, from Eqs. (33) 
and (34) 

where 

This gives 

cz'(x) = --~/ ,Ax -k O(Ax~), c2(x) = 2y~/fif~'(x3 + O(Ax ~) (118) 

~,~ = fiJ~'(x.)  ~ dr r2~o(X~ , r )  
>o 

(119) 

a; ~ ~ fif2'(x~) (120) 

in accordance with the distribution (3). 
Spontaneous fluctuations around x~ are normally very small, of the 

order of ez/% So the Kramers-Moyal equation (13) simply reduces to the 
Fokker-Planck equation (111) with ~, = 7o and c = c2(x,). Fluctuations are 
the standard Brownian noise. The correlation function of spontaneous 
fluctuations thus decays exponentially following (112). The macrovariable 
Ay relaxes in the same way even when its magnitude is much larger than that 
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of the fluctuations. Namely the linear law of relaxation holds for Ay to 
O(e ~ as long as 

] Ay l ~ ~'e/�89 

This almost trivial fact is noted here in connection with Onsager's old assump- 
tion which asserts that the average regression of spontaneous fluctuations 
near equilibrium is governed by the relaxation law of the corresponding 
macrovariable. In the framework of our present approach this statement 
holds for a thermodynamic equilibrium as well as a nonthermodynamic 
steady state as long as the equilibrium is stable and nonmarginal. 

When the system is subjected to an external force K the equilibrium is 
shifted by the force. The effect of such an external force is incorporated in 
the evolution equations in the following two typical ways. 

(a) The force simply modifies the drift velocity as 

c~(x, K)  = cl(x) + X (121) 

and leaves other e, unaltered, lhis means that the force drives the system by 

2 = el(y) -}- K (122) 

A shifted equilibrium is determined by 

cl(xx) + K = 0 (123) 

Variations around the equilibrium xK are described, in a linear range, by 

Aj~ = --~'ic Ay + AK, ~'K = --(O/~xK) cl(xx) (124) 

(b) The external force modifies the equilibrium free energy f~ in 
Eq. (29), or more generally the function q~e in Eq. (1). If the free energy 
exists, it is generally changed into 

cz(x, K ) =  --2 f drr~x(x,r)sinh [~-~ [ ~fe rt-gU-- K)] 

c2(x, K ) = 2  f dr r~V~K(x, r)cosh [-~ [ ~f~ 

(125) 

(126) 

where the symmetrized transition probability ~ may depend on K as indicated 
by the subscript K. A stable equilibrium xK under the force K is determined 
by 

L'(xid = K (127) 
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Around the equilibrium, variations in linear ranges follow the equation 

A p  = - - 7 K ( A y  - -  XK A K )  (128) 

Noticing that 

1 ~Cl(XK, K) Or K) 
fe ' (xK) ~x K 8 K  

- ~ c~(x~, K) 
2 

(129) 

as obtained from Eqs. (126) and (127), we find that 

and 

acl(xtc , K) 1 
7 x  - -  ~ x x  - -  2 flJ[(xic) c2(xK , K )  (130) 

1 ~Cl(XK, K )  fi ce (xx  K )  (131) 
X x  = 7 x  ~ - -  2 7 ~  ' 

Spontaneous fluctuations around X x  in the absence of A K  are normal 
Brownian fluctuations. In accord with the linear equations (124) and (128) 
with A K  =- O, the autocorrelation of the fluctuation A x  = x - -  xK behaves 
normally as 

(Ax(q) Ax( t~ ) )  = ~cr~ce -~#~1-t2) (132) 

where the equilibrium variance a~c is given by 

( A x  ~) = e a x  = �89 , K ) / e K  (133) 

This shows that the differential admittance/,(~o) is expressed as 

1 1 (Ax( to )  A x ( t  o -k  t ) )  e -~*  dt (134) 
/ ~ x ( w )  - -  im + e x  - -  Ea,v 

in case (a) and as 

1 
xK(o~) - i~o + 7x yKXK(0) 

[ ~ ] fl ( A x  ~) ioJ (Ax( to )  Ax( to  + t ) )  e -i~ dt 
E 

(135) 

in case (b). This is the fluctuation-dissipation theorem m for the differential 
admittance around a shifted equilibrium and the spontaneous fluctuation 
spectrum. 
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6. F L U C T U A T I O N S  IN STATES FAR FROM E O U I L I B R I U M  

As long as a system never passes through a marginal, critical, or unstable 
equilibrium point in the course of its evolution, fluctuations of the 
macrovariable around the deterministic path can be described as a Gaussian 
process as was noted in Section 3. It is important to notice that the multigate 
transition probability (75) can be expressed as a path integral, 

g (x l ,  tl ; x~, t2 ;...; x~,  t~) 

= f d ~ e x p  1-- ~s 2ec2(x~)l L[dX~dt --cl(x~)] 2 dtl (136) 

where xt is a path starting from xl at time t l ,  passing x2 at t 2 ..... and ending 
at x ,  at t~. The integral over the paths is carried out with a properly defined 
measure of paths similar to the case of a Wiener integral or of a Feynman 
integral. In order to see this, we simply note that Eqs. (i02)-(I04) are inte- 
grated over a short time interval A t to give 

y(t q- At  I xt , t) -- xt + c(xt) At + O(At 2) 

~(t + At  I xt , t) = c2(x 0 At  q- O(zh ~) 

u(t -ff At  [ x~ , t) = O(dt  ~) 

Thus the expression in the exponent in Eq. (75) becomes 

1 t 
2c2(x0 At 

1 1 [ dx~ c1(x~) At + O(At~) 
= 2-g y '  2 e ~ ( x 3  t clt - 

if the successive time intervals are all equal to A t. Taking the limit of A t --~ 0 
and keeping fixed points xa, x., .... , x~ at f i ,  t 2 ..... t, the summation over all 
possible intermediate points goes over to the path integral (136). An explicit 
integration over paths is usually rather hard, but one can convince himself 
easily that Eq. (136) gives, for example, the result (109) by elementary 
calculations. A more general formulation of the path integral solution of 
Eq. (10) is given in Appendix A. 

Now we consider a deterministic path (Y0, to) --~ (Yl, fi). Around this 
path each realization x~ may occur as a fluctuation with the probability 
proportional to the integrand of the expression (136). This can be described 
in the Gaussian approximation by the evolution of the parameters y~, e t ,  and 
u~ as determined by Eqs. (102)-(104) with the initial conditions 

Y = Y O ,  Cr ~ -  ~  U = b/o ~--- 0 
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at to �9 The correlation function of fluctuations is defined by 

</ix, Axt )  = (x~x~) -- (x,F(x~> 

= (x~xt)  - -  Y, Yt --  eu~yt --  ey~ut @ O(e 2) (137) 

for to < -r < t < t~ since we have (x~) = y~ -t- EUe. The expression (137) is 
a quantity of order e. For  the whole system the corresponding quantity is the 
correlation 

( A X ,  AXe> = ~(Ax~ Axe) 

which is proportional to the size, as is actually observed by experiments. 
By definition we have 

(138) 

which is found to be 

( x , x t )  = ( x , y ( t  [ x~, T)) @ e(x,u( t  l x~,  -r)) (139) 

with the use of Eq. (75). The average here is taken over the distribution 
P ( x , ,  ~). Considering the Gaussian distribution of x,  around the average 
y,  + Eu, with the variance equal to ecr,, we expand the first term on the 
rhs of Eq. (139), to first order in e, as 

( ( (x~)  + Ax, )  y( t  l (x,)  -? A x , ,  T)) 

= ( x , ) y ( t  I(x~), -r) + e(r , (8 /8(x , ) )y( t  [(x~), -c) 

+ �89 e) y( t  Kx~), ~') -t- O(e ~) (140) 

The first term of the above expression is again expanded in e as 

( x , )  y( t  l (x , ) ,  -r) = Y, Yt + eu, yt -}- ey,u~(~y~/~y,) ~- O(e 2) 

In the second term of the rhs of Eq. (139) x, can be replaced by y , .  Thus we 
have from Eqs. (138)-(140) 

~Yt 1 02Ye ] ~Ye 
(Ax~ Axe)  = ey, [--ue -t- u(t [ y ,  , ~') § u, ~ -t- ~ e,  -8-y21 § f i tS .  r 

ey, 

(141) 

Note that u(t I Y , ,  -c) is not equal to ue, because it is the solution of Eq. (104) 
with the initial conditions at time ~- that y = y , ,  r = 0, and u = 0. The 
basic Markovian property, which is preserved in the Gaussian approximation 
(74), requires that the expression in the bracket on the rhs of Eq. (141) should 



Fluctuation and Relaxation of Macrovariables 77 

identically vanish. This can also be checked directly by explicit solution of 
Eqs. (102)-(104), namely 

utCY~) = u(t l Yo , to) = �89 f~i' [c;'(Y)/cz(Y)2] cr+Cy) dy (142) 

f ; "  u(t [ y ,  , , )  = �89 [c;(y)/c~(y) 21 # ( y )  dy (143) 
o 

where 

[ff'+ c2(y) dy ~o 
at(y+) = el(y+) 2 o cz(Y) 3 + e~(yo) 2 ] (144) 

f ( +  c2(y) dy 
a'(y+) = ~ ( t [ y ~ , ' r )  = cz(y+) z �9 czCy)Z 

and the relations 

(1.45) 

~y+/~y.~ = clCYt)/clCy.~) (146) 

02yt/+y+ 2 = [czCY+)/clCy~)2][cl'(yt) - -  cl'(y+)] (147) 

obtained from Eq. (102). 
For a set of  macrovariables x = (x~), Eq. (141) is generalized to the 

correlation matrix 

( A x e ,  AxBt ) = eye, [--U~t @ " ~YB+ 4:- 1 ~2y~+ -{- uo(t [ y ,  , r)] 

(148) 

where the usual convention is used for summation over dummy indices. The 
expression in the brackets on the rhs of the above equation vanishes as before 
because of the Markovian property. 

So we arrive at the simple result 

(Axe, Ax~t) = e ~ a~,,(~yst/Oy,,,) (149) 
Y 

or in the case of a single variable 

which is written as 

(Ax ,Ax+)  = e~, ~y+/ey, (150) 

(AxTAIxt)  = ccr.~ cl(yt)/cz(y.~) (151) 

with the use of Eq. (149). Thus the correlation functions of fluctuations are 
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expressed in terms of the variance at time r and the deterministic evolution of 
y in the interval (% t). A trivial example is a Brownian motion with a linear 
relaxation and a constant c2, for which we have 

(Ax ,  Axt)  --= ~,Yt/Y~ 

= e[cr~ -k (a0 -- cry) e -z,-] e-,< ~--) (152) 

in accordance with Eq. (106). 
For  a nonlinear system the evolution of y and cr is more complex and 

is reflected in the more complicated behavior of the correlation function. 
Nonlinear effects in fluctuations show up when the system changes over a 
large range, for example, as relaxation from a state far from equilibrium, or 
as a forced process driven by a strong external perturbation. The above 
formulation provides us with a useful means to analyze such fluctuation or 
noise problems as acompany nonlinear processes, which have been treated by 
several authors, MacDonald and van Kampen, among others. 18) Applications 
of the present theory to such problems and the relationship of the present to 
previous theories will be discussed in a separate paper. Here we only remark 
that the above treatment suggests that nonlinear stochastic processes may be 
characterized by the functions el(y) and c2(y) under normal situations. If 
these functions are known from a more basic theory or from experimental 
data, they can be used to predict the behavior of the system under general 
conditions. This approach seems to have wide applicability to a great variety 
of physical as well as nonphysical problems. 

7. N O N L I N E A R  R E L A X A T I O N  A N D  A N O M A L O U S  
F L U C T U A T I O N  N E A R  U N S T A B L E  E O U I L I B R I U M  

If a system is near an unstable equilibrium, it will eventually depart 
toward a stable equilibrium. At the initial stage the macrovariable we observe 
will grow exponentially according to 

Aj~ ~ ~,' Ay or Ay ~ Ay o exp0/ t  ) (153) 

where 
7' = cz'(Yo) > 0 

The fluctuation will also increase exponentially following Eq. (103) as 

cr ~___ [exp(27't)][% -/- fo [exp(--2y'~-)] c~(y~) d"r (154) 

As the system approaches a new equilibrium the variance cr will reach a new 
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equilibrium, passing through a maximum. This is a general feature to be 
observed in a process of transition from an unstable to a stable equilibrium. 

As a simple example we consider the case where 

c l ( y )  = (TY/Y~)(Y~ - Y) ,  % ( y )  = c2 = const (155) 

The state y = 0 is an unstable equilibrium and the state y = y~ is stable. For 
convenience we put 

y = �89 -- cos 0) (156) 

and assume that y is initially 

0 < y  = y 0 < y ~ ,  0 =  0 0 ~ 1  (151) 

Then Eq. (95) gives 

[ sin 0 ]a I cos Oo cos 0 
or(y) = % \ s i - ~ 0  ] + cry(sin 0) 4 sin 4 00 sin k 0 

3 0 o 0 ] 3 tan(0/2) 1 + [.cos cos 
sin 20o sin s 0 J § 8 log tan(Oo/2) (158) 

where 

~ = c2/2y 

is the equilibrium value of cr at y , ,  and ~0 is the initial value at y = Yo �9 The 
variance (158) will attain a very large peak when the system is about half-way 
to the final equilibrium, namely when y ~ y J 2 .  The height of the peak is 
approximately 

~max -~ (% + cr~)/(sin 0o) 4 (159) 

which can be an enormous enhancement, for example, of 104 if 0 o ~ 10 -1. 
Such a phenomenon may occur when a stable equilibrium is suddenly 

switched to an unstable state by a change of a certain parameter. Imagine, for 
example, a magnet which was initially above the Curie temperature suddenly 
cooled below the Curie temperature. Then a spontaneous magnetization 
eventually will develop. One would expect anomalous fluctuations to 
accompany such a change. By the sudden change of a certain condition a 
society may move toward a new equilibrium state, in the course of which 
movement an enormous uneasiness can be expected to arise. An example in 
physics seems to have been observed in laser phenomena, which has recieved 
a theoretical analysis ~9~ but not from such a general point of view as developed 
here. 

If  the system was initially at the exact unstable position, namely A y  o = 0 
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at t =- 0 in Eq. (153), there will be no evolution o f y  for t > 0. However, the 
variance increases following Eq. (103), or 

,~(t) = 2y'~ + c(yo) 

with an exponential growth to infinity. We can try for Eq. (78) a solution of 
the form 

Co(x, t) = (1/2~) x 2 + b l ( t )  x 3 -k  b2(t)  x 4 + "'" 

as a better approximation. But we find that bz(t), b=(t), etc., also approach 
zero with the passage of time. In a different representation, qao in Eq. (70), 
q40, etc., will be found to diverge because they have factors giving exponential 
growth. Thus the initial distribution, peaked at Y0, becomes flatter and flatter 
and after a latent time of the order of 

log g2/y' 

there will be a finite probability of finding the system at small but finite devia- 
tion, of the order of e0, out of the initial unstable position. Once such a 
deviation is realized, it will grow exponentially and approach a new equili- 
brium. A Gaussianlike distribution will evolve in this process to attain the 
final distribution. A precise description of this transition is, however, beyond 
the capacity of the approximation (74). We need a more careful analysis of 
Eq. (78) or of the basic equation (10). A Hamilton-Jacobi method can be 
used for this purpose, as is briefly described in Appendix B. More details will 
be given in a forthcoming paper. 

Around an equilibrium point Eq. (102) may be assumed to have the 
expansion 

J~ = ~ ' lY  q- Y 2 Y  ~ q- ~ a Y  3 q-  "'" (160) 

We can discriminate among different kinds of equilibrium by the following 
conditions: 

(a) A stable equilibrium: y,  < 0. 
(b) An unstable equilibrium: y~ > 0. 
(c) A marginal equilibrium: y~ = 0 and y~ ~ 0. 
(d) A critical equilibrium: Yl = 0, y2 = 0, Ya @ 0. 

There can be other cases depending on where the expansion starts, but the 
above cases are important. We have already discussed cases (a) and (b). 

A well-known example of a critical equilibrium is a magnet at the Curie 
point. For the example of Weiss-Ising spins, as described by Eqs. (15)-(18), 
the critical point is given by 

= ~ = 1, /, = 0 (161) 
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In the neighborhood of this point the moments of transition are 
approximately 

cz = 2 ~  -k (a --  1)y  --  (�89 _ _~c~3)ya -k ""] (162) 

c = 211 -k �89 _ a)y2 + ...] (163) 

Clearly the paramagnetic state y = 0 is stable for /z = 0, a < 1. Ferro- 
magnetic states appear for o~ > 1. At zero magnetic field the spontaneous 
magnetization is given by the well-known equation 

y~ = tanh ~y~ (164) 

Equation (162) gives the approximation 

[ a - - 1  ]1/3 
y,  = 4- -(~2/T) _ (~3/6) (165) 

in the neighborhood of the critical point, which is the point where three 
equilibrium points, one unstable, two stable, coincide at y = 0. There Eq. 
(102) reads 

= --  [~,~ [y~ ~- .-- (166) 

which means that a given deviation relaxes in time as 

y = Yo/[1 + 2 [Ta [yo2t] 1/2 (167) 

This is a slow decay, which is related to the so-called critical slowingdown. 
As is well known, the relationship between magnetization and the 

external magnetic field is represented by a hysteresis curve. When the magnetic 
field (or the parameter/z in our notation) is made to decrease from a large 
positive value, the magnetization y decreases from its saturation value. It 
remains positive until/z reaches a negative value, which we call/zo, when a 
catastrophe occurs and the magnetization jumps to a negative value. This is 
seen from Eq. (102) with cz given by (20), but the essential points can be seen 
more easily by a simplified equation, 

.P = t z + a y  - -  b y  z ~ c l ( y ,  tz) (168) 

which is suggested by Eq. (162). The function c l ( y ,  tz) has a maximum or a 
minimum at 

y ~  = 4 - ( a / 3 b ) i / 2  

As is shown in the Fig. 1, the c~ curve touches the abscissa (at A) when the 
field/z is decreased to 

iz -~ - - i z~  = - -  2 b ( a / 3 b )  3/2 (169) 
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~ c,(y-~o) 
_ B y. I Y. 

Y 

\ 
Fig. 1. A catastrophe 

The point A is marginal. This is approached from the right (y > y+). How- 
ever, it is not stable because once this point is passed the final goal is B, which 
corresponds to the reversed magnetization. In the neighborhood of such a 
catastrophic point Eq. (102) has the form 

# = - -  E~'2 [y2  + ... (170) 

(the origin o f y  is now placed at y+). The relaxation follows the equation 

y = 2o/(1 + yo I~,~ I t) (171) 

which also describes the departure from Y0, if y0 < 0, as long as 

t ~ 1/I Y0Yz / 

This is again a sort of critical slowing down. The decay and the departure are 
slow and nothing like exponential. This is characteristic of a critical or a 
marginal point. 

8. R E L A X A T I O N  S P E C T R A  

If  the process (7) is stationary in the sense that the transition probabilities 
W are independent of time, the stochastic operator on the rhs of Eq. (13), 
which we denote by F, is associated with the eigenvalue equation 

(172) 

If  the operator f '  is such that it assures a unique equilibrium distribution 
P,(x), the eigenfunction 

tt%o ~ Pe  
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belongs to the eigenvalue A o = 0. Other eigenfunctions may be called the 
relaxation modes because any solution of Eq. (7) or (13) can be expanded as 

P(x, t) = P,(x) + ~ b~gZ~(x) e-a~ ~ (173) 
c~O 

provided that the operator fulfills some conditions required for the complete- 
ness of the eigenfunctions. 

An interesting question arises here in connection with the asymptotic 
properties of these eigenvalues and eigenmodes when g2 is very large. Recently 
Ruijgrok and Tjon a~ gave a rigorous treatment of the eigenvalue problem 
of the Weiss-Ising model defined by Eqs. (15) and (16). We have also obtained 
the same results with a different method and have extended this to a general 
problem. These treatments show that the relaxation modes are, roughly 
speaking, classified into two types. Normally, the first type of eigenmodes 
have relaxation frequencies independent of e and correspond to spontaneous 
fluctuations around an equilibrium. The second type of eigenmodes have 
relaxation frequencies of the order of e-1 and describe the decay of large 
deviations from equilibrium. When the system is at a critical or a marginal 
equilibrium the first type of eigenmodes accumulate to zero frequency, which 
is a manifestation of the slowing-down phenomenon mentioned in the last 
section. 

These features of relaxation modes seem to be a general property of 
macrosystems. In the following we discuss this rather briefly from the view- 
point developed in this work. A more detailed treatment, including a few 
specific examples, will be reported in a separate paper. 

First we note that the classical Brownian motion is a standard but 
uniquely simple case. If Cl and c~ are given by Eq. (105) and other c, are all 
zero, the stochastic operator/~ takes the form 

Fgt  = -- ~-x yx + ~ c2 -d-~- 7t (174) 

By scaling x as 
x = o /2~  (175) 

this is transformed into 

d (  c2 d 
F W = - - ~  y ~ : + y ~ ) W  (176) 

for which the eigenvalues and the eigenfunctions are 

) ~ =  ly, l = 0 , 1 , 2  .... ; t/t  = Ct exp 2e% H~ 

where the H~ are Hermite polynomials. 
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In a classical Brownian motion everything is scaled by (175) and the relaxation 
frequency spectrum is constantly spaced. Any fluctuation around equilibrium 
and any large deviation from equilibrium can be expressed as a superposition 
of the eigenmodes. 

This does not generally apply to an arbitrary macrosystem for which the 
linear law (105) does not necessarily hold. But fluctuations around a stable 
equilibrium are regarded as Brownian. If  we scale x by (175), we find that 
the terms higher than the third in the Kramers-Moyal expansion can be 
ignored. So fluctuations of the order of d/2 are described by the relaxation 
modes (177). It should be noted that even though the linear law (114) holds 
for deviations of the order of E ~ these deviations are not represented by the 
above-mentioned eigenmodes. This is a difference between a nonlinear 
system and a strictly linear Brownian system. 

At a critical or a marginal equilibrium fluctuations are anomalous. By 
Eqs. (166) and (170), the Kramers-Moyal equation has the form 

at -- ~ y~xk + 2 ~ c z  6 Ox aca-}- '"  P (178) 

where k = 3 for a critical point and k = 2 for a marginal point. The proper 
scaling is then 

X = E1/(k+l)~ (179) 

since the terms higher than the third on the rhs of Eq. (178) then become 
higher in e, thus leaving 

Putting 

/ ~ /  = --e(k-1)/lk+l} (_~ yk~k-@ 122 
2 

~2 
) 7' (18o) a~e2 

A = ~#k-:)/(~+l) (181) 

Y/e ~k+l] (t82) t/t = ~__p exp [ (k -t- 1) c2 

and 

we have then the eigenvalue equation 

where 

(~/~2) ~ + G(L ~) ~ = 0 

G(A, ~) = c-7 T --  2c2 

(183) 

(184) 
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We use the WKB approximation 

[G(L ~)P/~ d~ = 2~-(Z + ~-), l = 0, 1, 2 .... (185) 

to determine large eigenvalues corresponding to large integers l. For  a 
critical equilibrium the integration extends over --~1 ~< ~ ~< ~1, where -----~1 
are the roots of 

a(L = ~ )  = 0 

For a marginal equilibrium case x approaches zero only from the positive 
side, so that the integration should be limited to 0 ~< ~: ~< ~:~. The integration 
in (185) can be simplified because the second term in the brackets of Eq. (184) 
can be ignored in evaluating large eigenvalues. The results are asymptotic 
evaluations of eigenvalues as 

where 

)tt ~ E(k-1)/(k+l)121c/(~+l) X 2 - 1 [ ( 2 7 r )  ~k 4, ~ c k - l A - 2 e ] l / ( k +  ~) (186) 
- -  I Ic 2 ~, 

1 
A3 --= 4 ~o (1 --  ~n)z/~ &7 = 23/2/3 K(2-1/2) ----- 1.748... 

and 

fo ~ 3K (V6 -- v'2) A2 = 2 (1 -- ~/4)1/2 d~ 7 = 4 -- 4.794... 

Thus we have found that the relaxation frequencies accumulate at zero as 

)h oc 13/2el/2 (187) 

in the critical equilibrium case, and as 

At oc 14/3d/8 (188) 

in the marginal equilibrium case. In other words, out of the normal relaxation 
modes (177), about f2a/3 of the lower ones approach the zero frequency as the 
system becomes critical, and about s modes do the same as the system 
becomes marginal. This means that fluctuations at the critical or the marginal 
point are extremely long lived, which is characteristically associated with the 
nonlinear property at these points. 

Returning to the Kramers-Moyal  operator (172), we observe now that 
all orders of the expansion have to be retained if we come to very large 
quantum numbers of the order of l ~-, O(e-~), because the wavelengths of 
the eigenfunctions are then O(e). This means that we need a more accurate 
analysis of Eq. (10) than by truncating Eq. (13). Here we employ the method 
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of large perturbations devised by Bethe (lz) many years ago, which is sum- 
marized as follows. 

Consider the difference eigenvalue equation 

W(n) ~b(n) -- A(n + �89 ~b(n + 1) -- A(n -- 1) ~(n -- 1) = )t~b(n) (189) 

where the off-diagonal elements A(n) and the diagonal spacings 

A(n + �89 =- W(n -+- 1) -- W(n) 

are assumed to satisfy the conditions 

I A(n + 1) - -  A(n)i ~ A(n), i A(n + 1) - -  A(n)[  ~ A(n) 

and 

We define 

and 

] A(n)l < �89 n large 

V(n) = [W(n) -- )t]/aA(n) (190) 

v(n) = c o s  - 1  v(n) (190 

and find a good approximation of the solution of (189), 

f~ ~(n) = const • [A(n) sin v(n)]-l/2 cos v(v) dv 

in the region where 

--1 < V(n) < 1 (192) 

Outside of this region ~(n) behaves exponentially instead of oscillating. The 
boundary condition is the convergence of the integral of over n. Using the 
WKB connection to the outer regions, the eigenvalues are determined by 

~ v(n) dn = 7r(l + �89 l = integer (193) 
1 

where the limits nz and n~ are given by 

v(nl) = v(n2) = 0 or ] V(nl,2)l = 1 (194) 

By partial integration the quantum condition (193) can be written as 

f~21 [1 --nV'(n)v(n)~] ~/2 (l 1 d n = w  + ~ .  (195) 
Z /  
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Now we assume detailed balance and rewrite the transition probability 
(27) as 

W(X-+ X -? r) ---- W(X t X + r) exp �89 -/- r) --  (P~(X)J 
(196) 

-~ A(x --[- �89 exp[�89162 -t- 1Er~r + ""] 

where 

A(x + �89 = (I/c) ~(x) 

and assume further, for simplicity, that a jump can only be ~: ] r ]. Then our 
stochastic operator is of the same form as (189), so that we can apply Bethe's 
method. The quantum condition now reads 

f ; .  xV'(x) ( l §  l) (197) 
1 [ 1  - V(x)~] l /~  d x  = ~Er 

by replacing n by x/Er. The integration limits are determined by 

V(.,~'I) : V(x2) ----- 0 (198) 
Since 

w(x)  = Z w ( x - ~  x + r) 
+lrl 

we have from Eq. (196) 

2 ~ ( x )  

+ e r cosh 2 r + 2 ~(x) sinh r 

-I- O(d)  (199) 

Near a stable equilibrium we have 

' x - " x - ( 2 0 0 )  r ( ) ~ --(l /~,)(x x~) and r ) ~ _ e z  

If  the eigenvalue A is O(E~ the integration (200) is limited to 

x - x~ - -  O(O/~)  

so Eq. (197) is conveniently approximated by 

V. ~ ~:~2 [1 - -  V(X)] 1]2 dx  = 7TEr(1.21- �89 (201) 
~1 
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in which only the quadratic term of (x --  x~) is retained. Taking the first 
bracket on the rhs of Eq. (199), we obtain the result (177) for the eigenvalues. 
The second bracket only gives a shift. 

The same method can be applied to a critical or a marginal equilibrium 
to derive the result (186). 

If  the eigenvalue )t is O(e-~), on the other hand, Eq. (198) gives the 
integration limits x~ and x2 deviating from x~ in order E ~ The eigenmodes 
with these very high quantum numbers thus extend over a finite range of x. 
The density of eigenvalues is given by 

(d/dh) ff~ cos -1 V(x, 11) d x  = zrerp(A) 
1 

(202) 

which is reduced to 

p(;9  = ~ [1 - v ~ ( x ,  ;9]-1/~ ~(x) 
1 

(203) 

'For the Weiss-Ising model the above formula gives 

PO0 = (1/2~-) f dx[(1 - -  x2) ~1~ q- cosh(/* q- e~x) x sinh(/,  q- o~x) - -  )q-~/". 

• [(1 --  x2) 1/~ - -  cosh(/z q- c~x) q- x sinh(/, q- e~x) q- )q-1/~ (204) 

with the use of 

(~ = / x x  + �89 ~ -- �89 + x) log[�89 -t- x)] -- �89 -- x) log[�89 -- x) l 

which is obtained from Eq. (17) and by assuming ~ to be a constant. This is 
identical to the result obtained by Ruijgrok and Tjon (z~ using a spin operator 
algebra. 

9. C O N C L U D I N G  REMARKS 

We based our theory upon the Markovian assumption. As was men- 
tioned in introduction, this certainly limits the direct applicability of the 
theory, although we conjecture that many of essential features will remain 
even when this restriction is removed. As a matter of principle, in many cases 
a Markovian model can be used, provided that a sufficient number of 
variables are chosen to describe the process. In practice, however, this will 
lead to complications. In some cases it is very essential to have a great number 
of  variables. As long as the number is finite our description of critical pheno- 
mena cannot go beyond the mean field theory. As is well known, the delicate 
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singularity at a critical point comes from the interplay of an infinite set of 
field variables of the order parameter which results in a breakdown of the 
Gaussian property in long-wavenumber modes at the immediate vicinity 
of the critical point. Instea~ 822/9/Z-4verse size of the system, the wave number 
should appear as the parameter e. 

We have left a few points untouched in this paper. A useful method for 
dealing with a stochastic process is the so-called Langevin equation approach. 
A Markovian Gaussian process corresponds to a Langevin equation with 
Gaussian white noise. However, generally this has to be nonstationary and 
the noise power depends on the state of the system. This is related to the path 
integral representation described in this paper. Many recent treatments of 
nonlinear processes use the Langevin equation method. Thus our theory will 
be useful to obtain a deeper understaning of such approaches. 

Our theory seem to have numerous applications. As mentioned earlier, 
many birth and death problems can be attacked with this method. Interesting 
applications are to nonlinear noise problems, as was studied by van Kampen 
some time ago. Some of these applications are in progress and will be reported 
on in the near future. 

APPENDIX  A. PATH INTEGRAL F O R H U L A T I O N  

The transition probability P(x, t l xo, to) from x0 to x in a time interval 
to < t is the fundamental solution of Eq. (12) with the initial condition 
P(x, t o I xo, to) = 3(x -- xo). This is shown to be expressed in terms of a 
path integral of the form 

xo, to) = f d~(x, ~r) P(x, t t 

ex .  

As an asymptotic evaluation for a very small value of the parameter e the 
above expression is transformed into another form of a path integral 

P(x, t Ix0,  to )= f d~(x) exp [1 f~ ds L(x(s), ~(s))] (1.2) 
to 

Here we defined the Hamiltonian H by 

p, t) = f dr (1 --  e -~'~~ w(x, r, t) (A.3) H(x, 

in terms of the transition probability w, Eq. (9), and the Lagrangian L by 

L(x, ~, t) = --H(x,  p, t) + p2 (A.4) 

82219/I-6 
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and 
~H(x,p ,  t)/~p = �9 (A.5) 

by which p is thought of  as a function of x and ~. In (A. 1) the paths are in 
the "phase space" of  x and ~r and in (A.2) they are in the configuration space 
o f  x. The measure of paths in each case should be properly defined as in the 
case of  a Feynman or a Wiener integral. 

In order to see this, we first note that in the x representation 

(x ' [  exp[--(At/e)  H(x' ,  ~ 8/8x', t)]l x") 

= dk exp[--(At/e) H(x' ,  iEk, t) + ik(x' -- x") + O(At2)] (A.6) 
oo 

x' -- x" O(At2) I f=_| (drr/~)exp 1--(At/e)[H(x' ,  ilr, t ) -  i~ - - ~ t  x ]  -k 

for a short time A t, where we used the fact that the differential operator ~/ex 
appears in H only to the left of  functions of  x, so that the effect of  non- 
commutabili ty of  x '  and O/~x' arises only in the higher order of At. The 
formal  solution of Eq. (12) is now written as 

P(x, t l Xo, to) 

(x, [-- o ds H ~-x ' s/ a 3(x - -  X o )  exp._ 

[ ( )] = l i m e x p  At  H x , e  t 3 ( x - - x ~ _ O d x ~ _ l  
A t->0 - -  " E " ~ X  ' 

• exp H x~_ 1 , -- e ~-~-f-~ , t ,_l  3(Xn-1 - -  X.-2)  dxn-g 
E X n _  1 

• " ' "  

• exp - -  H X l ,  e tl 3(Xz --  X0) dxl (A.7) 
e g~xl' 

where exp,_ means an ordered exponential, which is decomposed into a 
product of an infinite number  of  infinitesimal evolution operators of the 
form (A.6), and the multiplication is performed in the x representation using 
the expression (A.6). Thus we see that the expression 

P(x, t t X o , t o )  = lira f "'" f dXldTTzdX2dT[2""dx._ldTfc t_lE -~ 

l 1 
• exp - - -  A t  H ( x j , i ~  t~)--izcj xj  

e j=i ' A t  

tj = to + jAt ,  n A t  = t - - t o ,  x ,  = x (A.8) 

is reduced to the path integral (A.1) in the limit At  --~ O. 
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For a very small value of e the path integral (A.1) can be evaluated 
asymptotically. Writing 

and 

i~r(s) = p(s) -k iz/(s) 

(l/e) f ds [H(x(s), iTr(s), s) --  izr(s) ~(s)] 

= Y, ( , % / , ) [ H ( x ( s 3 ,  i~(s3,  s~) - -  i~(s3 ~(s31 

we suppose that the time intervals A& are not too small, so that the steepest 
descent evaluation can be used for large values of As/E and that the paths are 
effectively limited to those sufficiently smooth for the chosen set of reasonably 
small intervals Asj to allow us to approximate the time integration by a sum 
over the Ass.  Choosing the cols at 

~H(x(s) ,  p(s), s ) /@(s)  = ~(s) 

we perform the integrations over the zr'(sj) to get 

1-[ f drr' (sj)exp t--  As~ [H(x(s~), iTr(sj), sj) --izr(sj)~(sj)]t, 
j e 

, - - H , ,  dsj  exp {--  ~As e [H(x(s,), p(sj), sj) - -  p(s,) ~(sj)], 

since H ~  = 32H/cqp~ is negative for real values o f p  [see Eq. (A.3)]; this can 
be written as Eq. (A.2) with the Lagrangian (A.4) and with a properly defined 
measure of the paths in the configuration space. 

By Eq. (A.3) the Hamiltonian H now is given as 

H(x ,p ,  t) = n! cn(x, t )p"  
n = l  

(A.9) 
= C l ( X  , t )p  --  �89 t)p~ q- "" 

so that Eq. (A.5) becomes 

o r  

= cl --  c2 p 4- �89 S . . . .  

P = P o §  c3 " 2 -  c~ p~ 
2C 2 r " ~ 2  @ "'" 

= P 0 q -  c3 , ,2q_ ( ca ~ c4 ... 
2c~ r0 2co. 2 6c~ ) p~ -+- 

(A. 1 O) 

(A.11) 
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Po =" [c l (x ,  t)  - -  ~]/c~(x,  t )  

Then Eq. (A.4) gives 

= - H  + p x  : po + c3 + 
(.C3~ 

L 
6c2 +'o \ 8c22 LZ. 

(A.12) 

c4 )p0~ § ... ] 
24e~ 

(A.13) 

The path integral (A.2) reduces to Eq. (136) if only the lowest-order term is 
retained in (A. 13), namely 

L ( x ,  2, t )  = - - [ 1 / 2 c 2 ( x ,  t ) ][c l (x ,  t )  - -  a?(t)] ~ (A.14) 

A P P E N D I X  B. T H E  H A M I L T O N - J A C O B I  M E T H O D  

Another step of asymptotic evaluation can be made for the path integral 
(A.2) by choosing the path that maximizes the action integral 

J(t, to) = J(x, t I Xo , to) = ~ cls L(x,  ~, s) (B.1) 

The path is determined by the Euler equation, 

d 8L 8L 
= 0 (B.2) 

ds ~ 8 x  

or by the canonical equations of motion 

b(s) = - - e H / e x ,  ~(~) = an /ap  (B.3) 

with the conditions 

X(to) = Xo and x ( t )  = x (B.4) 

In the phase space (x, p) such a path may or may not be found by a suitable 
choice of the initial value Po - -  p( to) .  If it can be found, the action integral 
(B.1) gives the required transition probability by 

P ( x ,  t]  Xo , to) = C exp[(1/E) J ( x ,  t [ Xo ,  t0)] (B.5) 

as an asymptotic expression for a small value of E. This is another way of 
looking at the asymptotic nature of our problem and is in accordance with 
what we have discussed in the text. 
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One immediately notes now that this is closely related to Eq. (78). If  we 
write 

e(~o/OX = p and O~o/Ot = q 

Eq. (78) is simply written as 

q -k H(x, p, t) = 0 (B.7) 

The characteristic equations of this partial differential equation are 

dx OH dp OH 

dt @ ' dt Ox (B.8) 
dJ ~H OH dq OH 
~ - = q + p - ~ p  = - - H  + p-~p ~ L, - ~ =  at 

where we write J for 4o in Eq. (78). The first two equations are of course 
identical with (B.3) and the third with (B.1). 

The Cauchy problem of Eq. (78) is solved by the standard method in 
the following way. At t = to we impose the initial conditions 

X(to) = ~, p(to) = f ' (~) ,  J(to) = f(~) 

q(to) --- - -H( ( ,  f ' (~),  to) (B.9) 

and find the solutions of the ordinary differential equations (B.8) as 

x ---- x(t, ~), p = p(t, ~), J = J(t, ~), q = q(t, ~) (B.10) 

These solutions give J(x, t) as the solution of Eq. (78) in a parametric 
representation through (. At t = to we have imposed the initial function 

d(x, to) = f ( x )  (S. l l )  

and at time t we find J(x, t) by 

x = x(t, ~) and J = Y(t, ~) (B. 12) 

If  the basic process is stationary in the sense that H does not depend on 
t explicitly, the conservation law then holds 

H(x, p) = const = H(~, f'(~)) (B. 13) 

which can be solved in p to express it in terms of x and ~:. Then the first 
equation of (B.8) is integrated to give 

f f  dx OH/@ = t -- to (B.14) 
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and the third to give 

J/ J(t)  = f(~) - -  H(s~, f ' (~))  t -k p dx  (B.15) 

These two equations yield J(x,  t) at time t. 
This can be conveniently visualized in the phase space (x, p). The 

Hamiltonian H(x,  p) induces flows in the phase space. The function J(x,  t) is 
there represented by a front which expresses the relationship between x and p 
as determined by the first two equations in (B.10). The initial front is thus the 
curve p ~ f ' ( x )  and it propagates in time according to the phase flow. I f  
there exists an equilibrium distribution Pe~(X), the front approaches the 
corresponding final front. 

This is most  easily illustrated by the simple example of  a Brownian 
motion, for which we have 

cz(x) = --~,x and c2 - -  const = c 

so that the Hamiltonian H is 

H = - - ~ x p  - -  �89 2 (B.16) 

The constant-H contours in the phase space are shown in Fig. 2. The straight 
lines 

p = 0 and p + (2y/e)x ----- 0 

are those for H = 0. Between these straight lines there are flows with H > 0 
or H > 0 as indicated in the figure. The arrows show the directions of  the 
flow. I f  the initial function is 

J(x,  t) = --(1/2%)(x - -  Xo) 2 

H < 0  

H<0 

Fig. 2. Phase flow for a Brownian system. 
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p 

,<, \ \ , :o  

Fig. 3. Phase flow for a ferromagnet below the critical point. 

corresponding to an initial Gaussian distribution of P, the initial front is 

p = - ( 1 / ~ o ) ( X  - Xo) 

In this simple case Eq. (B.8) are very easily solved. The front remains 
a straight line 

p = - ( 1 / ~ 3 ( x  - xoe -~9 ,  ' ~  = '~. + (~o - oo) e - ~  

at later times and approaches the final asymptote 

p = - ( 2 y / c )  x = - ( 1 / ~ 0 )  x 

at t = m, corresponding to the equilibrium distribution (108). 
In a general case there may be stable and unstable equilibrium points of  

x and the flow pattern in the phase space may be more complex. An example 
is illustrated in Fig. 3, which corresponds to a ferromagnet below the Curie 
temperature. By Eq. (A.9) the straight line p = 0 is the contour with H = 0. 
There is another contour with H = 0 as shown in the figure, which defines 
domains of phase flow. The temporal evolution of ~0(x, t) in Eq. (78) is 
determined by this sort of  flow pattern. This will be discussed in more 
detail in a forthcoming paper. 
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